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CBL project problem

Human behavior prediction problems, and the issue of
explaining deep learning predictions.

Deep Learning predictions shouldn’t be treated as a ’black
box’ — want to explain classifiers.

Avoid fitting bias induced from learning ’flat models’,
using domain ontologies to structure models.
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CBL project domains

PeaceHealth (Electronic Health Records)

Eli Lilly (Drug Information)

Baidu (Social Media)
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PeaceHealth

Nonprofit Health Care Network

Predicting Health outcomes and recurrences:
incorporate explicit & implicit social and environmental
factors and self motivation into DL model
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Eli Lilly

Global Pharmaceutical Company

Understanding healthcare outcome relationships between
patients and products
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Baidu

Search engine/internet company — ”the Chinese Google”

Incorporate social media user data for human behavior
prediction
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LIME

Goal: provide an ”explanation” for any given classifier, i.e.,
provide some characteristic which illustrates qualitative
understanding of the relationship between an instance in the
data, and the corresponding model prediction.
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Model Accuracy vs Explanation

It may be desirable to choose a less accurate model for content
recommendations based on the importance afforded to different
features (e.g., predictions related to ‘clickbait’ articles which
may hurt user retention).

metrics we can optimize: accuracy

metrics we might actually care about: user engagement,
retention

In this case, it is important to have a heuristic for explaining
how a model is making predictions, along with the actual
predictions themselves.
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LIME

An algorithm that can explain model predictions such that:

explanations are locally-faithful to the model.

explainations are interpretable.

explanations are model-agnostic.

can be extended to a measure of a model’s trustworthiness
— i.e., extended to explain the model.
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LIME

Local

Interpretable

Model-Agnostic

Explanations
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Interpretable vs Features

text classification:

interpretable explanation — binary vector indicating
presence/absence of a word.
feature — word embedding (i.e. W2V Skipgram).

image classification:

interpretable explanation — binary vector indicating
presence/absence of super-pixels: contiguous patches of
”similar” pixels.
feature — representation of image as tensor via ConvNet
with 3 color channels / pixel.

x ∈ Rd the representation of an instance ! x ′ ∈ {0, 1}d ′

is a corresponding interpretable representation.
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Optimization Criteria

Ω(g) = complexity of the model g .

f : Rd → R a model, i.e. f (x) is the probability that x
belongs to a certain class.

L(f , g , πx) = measure of the error in approximation of f
by g in the region defined by πx (locality-aware loss).

Then, the LIME model balances the constraints of
interpretability and faithfulness by selecting (locally)

ξ(x) = argming∈GL(f , g , πx) + Ω(g)

where G is a class of potentially interpretable models, such as
linear models, decision trees, or falling rule lists
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Sampling

To perform minimization as defined by ξ(x), ”sample uniformly
from instances around x ′”, weighted according to πx . This
recovers points z ∈ Rd to which we apply the label f (z) (model
prediction), yielding the dataset Z = {(z , f (z))}sampled z . We
then optimize model’s argming∈GL(f , g , πx) + Ω(g) for Z.

Sparse Linear Explanations

model class: G = {g : z ′ 7→ wg · z ′}.
locality distribution: πx(z) = e−D(x ,z)2/σ2

(gaussian /
exponential kernel) for a domain-appropriate distance
measure D. (i.e., cos, L2, etc.)

L(f , g , πx) =
∑

z,z ′∈Z πx(z)(f (z)− g(z ′))2.
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Example: Intuition
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Example: ConvNet
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Explaining Models: SP-LIME

Extend LIME so as to give a global understanding of the
model, by explaining a set of individual instances. Problem is
to select a set of instances which is simultaneously feasible to
inspect and gives non-redundant explanations that represent
the model’s global behavior.

Given X instances, construct an |X | × d ′ explanation matrix
W = (|wgi j |), where gi = ξ(xi ) is the LIME-selected
interpretable local sparse-linear model approximation.
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Interpretation of W

W represents the local importance of the interpretable
components at each instance.

If ej = (0, . . . , 1, . . . , 0)T , then Ij := ψ(W T
ij ej) gives a

measure of the global importance of component j , where
domain-dependent ψ controls weight assigned to column j .
Ex (text):

Ij =

√√√√ |X |∑
i=1

Wij

Coverage cW ,I (V ) =
∑d ′

j=1 1{i∈V :Wij>0}Ij weights each
column measure Ij by the number of rows with non trivial
weights in column j , giving the total importance of the
features that appear in at least one instance in a set V .
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Example: Picking from W
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Pick Step

Toy example (previous slide): If all weights are the same and
V = rows 2 & 5, then:

cW ,I (V ) =
√

W12 + W22 + W32 + W42

+
√

W23 + W33 +
√
W44 + W54 +

√
W55

Given a maximum budget of B inspections, then, the goal is to
determine

Pick(W , I ) = argmax|V |≤BcW ,I (V )

which maximizes coverage cW ,I (V ) under the restriction
|V | ≤ B.
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Pick Step (cont.)

Algorithm: Determining Pick(W , I ) is maximizing a weighted
coverage function, and is NP-hard. Furthermore, c is
submodular, so a greedy algorithm iteratively acting to
maximize marginal coverage gain cW ,I (V ∪ {k})− cW ,I (V )
offers a constant factor approximation to the optimal coverage.
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Results

Test via:

label a proportion of certain features as “untrustworthy”.

develop oracle “trustworthiness” labeling test set
predictions from a black box classifier as “untrustworthy”
if the prediction changes when untrustworthy features are
removed from the instance, “trustworthy” otherwise.
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Results (cont.)
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Results (cont.)
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LIME with RNN

CO2 data:
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LIME with RNN (cont.)

Explanation:
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Ontological Deep Learning

A network ontology consists of a set of concepts, sub-concepts,
and relations between concepts. Each concept can contain
sub-concepts as well as characteristics:
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Ontology Representation

ORBM+ model extends an RBM with temporal dependencies
(connections between hidden, visible layers to historical
variables) by first learning a representation of the concepts and
relationships in a given ontology H — represent concepts S ∈ H
by a set of learnable hidden layers hS: For a concept S ∈ H,

ΨS :=
⋃

F∈FS
VF is the union of all characteristics from

the relationships FS of S.

ΘS :=
⋃

C∈CS
hC is the union of all hidden variables from

the various sub-concepts CS.

Then, all the variables vi ∈ VS ∪ΨS ∪ΘS are considered as a
visible layer in an RBM, and the hS is considered as a hidden
layer.
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Probabilities

This model has conditional probabilities

p(hj |VS,CS,FS) = N (bj +
∑

vi∈VS∪ΨS∪ΘS

viWij)

p(vi |hS) = N (ai +
∑
hj∈hS

hjWij)

which are used to compute the energy function associated with
S, for training the model.
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ORBM+ Model

To learn representations hS of “higher order” concepts S, first
learn the representations hCS of the related sub-concepts.
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ORBM+ Model (cont.)

W — used to capture the ‘self-motivation factor’

A,B — used to capture the correlation between past and
present states.

ηut — temporal smoothing used to better capture explicit
social influences on user u at time t
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Explanation Generation

Model initially used for users in a health program:
Explanations increase transparency of the intervention
process, contribute to users’ satisfaction, and are facilitate
in user engagement.

Explanation as a list of characteristics which maximize the
likelihood of a behavior being engaged by a user (or set of
users).

logP(Y |X , θ) maximized given the characteristics X =⇒
X is the best explanation for Y .

X contains many characteristics in high dimensional data,
making it non-transparent and uninterpretable for lay
users. i.e., want to find an interpretable explanation

X∗ = argminX ′⊂X f (logP(Y |X ′, θ),X ′).
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Minimum Description Length

Use minimum description length to encode observed data Y via
an explanation X ′, then encode X ′:

L(Y ,X ′) = encoding length of Y given X ′

L(X ′) = encoding length of X ′

MDL minimizes

L(Y ,X ′) + L(X ′) = − logP(Y |X ′, θ) + |X ′| log(|X |)

over explanations X ′.

The complexity of explanation generation is NP-hard.
Hence, apply a heuristic greedy min algorithm which adds
new characteristics into the explanation so that selection
model MDL is minimized (stepwise).
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Results
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